High Efficiency Miniature Piezo Motors

SB992-0037 Contract #DAAH01-00-C-R039

DARPA Smart Structures Technology Interchange Meeting

Baltimore, MD 27 June 2000

Presented by:
Eric H. Anderson
CSA Engineering Inc.

Objectives and Scope

- Piezoelectric motors present an alternative to electromagnetic motors
- Goal is piezoelectric rotary motor that replaces friction interface with genuine mechanical interface
 - Reduced wear and increased reliability
 - Greater output and holding torque
- One objective is to maximize overall efficiency of electromechanical device
 - Integrated electromechanical design
 - Resonant pulsed electronic drive
- Concept being developed exploits suspended whirling stator driven at frequencies up to and including suspension resonant frequency
- Prototype testing with 20 mm diameter device

Program Schedule and Milestones

- Eight-month Phase 1 feasibility study is wrapping up
- Present effort
 - Final tests using prototype motor
 - New concepts based on lessons learned

Team Member Responsibilities and Status

CSA Engineering, Inc.

- Project lead, electromechanical design, microcontroller, power delivery, test and evaluation
- Status: finishing up testing and documentation

Warner Precision Engineering

- Electrical design and power delivery
- Status: several designs considered, prototype drive delivered

Rhombus Consultants Group

- Conceptual design, analysis, test and evaluation
- Status: conceptual design complete, analysis methodology developed and documented, simulation software written, supported test & evaluation efforts
- Overall current work on drive optimization for performance and incorporation of lessons learned into future prototype concepts

Accomplishments

- Gear-driven piezoelectric motor concept derived
 - Design parameters optimized for low loss operation
- Prototype motor developed
 - Laser machining process developed for 34-tooth, 25 mm outer diameter rotor
 - » Polycarbonate material
 - » Gear feature size O(0.1–0.5 mm)
 - Piezoelectric multilayer bimorph drivers
 - Programmable waveform PWM drive electronics
- Motor concept validated
 - Bi-directional operation achieved up to stator resonance

What Has Been Gained / Learned

Lessons Learned

- The Concept Works!
 - » Bi-directional motion at top speed achieved
- Motor operation is highly sensitive to alignment and positioning tolerances
 - » Artifact of relatively low actuator displacement
- Output torque is reduced by tolerance buildup
- Non-sinusoidal drive waveform required for best torque output
 - » Drive waveform optimization will drive next-generation electronics design for overall efficiency
 - » Charge pulse drives appear very promising
- Programmable, generic drive electronics have proven highly valuable for prototype development
- Continuation of research will increase speed and torque, with extension to smaller sizes

Piezoelectric Motor Operating Principle

- Principle: whirling stator directly drives rotor
- Current concept uses piezoelectric bimorphs; future design will employ compact optimized piezo geometry

Motor Design

Rotor

- 34 teeth on 20 mm diameter, 90° cut
- Laser machined with 5 mm wide teeth

Stator

- 3 teeth on 20 mm diameter
- 0.4 mm actuator stroke required (nominal)
- Pivot center fixed by ball joint and torque link

Piezomotor Gears

rotor tooth

Laser machining for ~1 mm feature sizes

Process scales well to objects one-tenth size

Several parts with different angles fabricated

Close-up of 34-tooth rotor

Close-up of stator gear

Gear alignment

Laboratory Demonstration Hardware

Rotor (left) shown retracted from stator

- Testbed allows investigation of mechanical and electrical components
- One-axis precision linear stage used to position rotor

Drive freq

Prototype Piezomotor Drivers

First generation driver

- Quick and simple laboratory prototype
- Labview app. interfaces with microcontroller, sets direction and rate
- On/Off piezo control binary state output lacks waveform control
- Inefficient lacks mechanism for energy "recovery"

Second generation driver

Micro-

controller

- Pulse width modulation (PWM) output
- More efficient energy delivery energy recovery through inductive filter
- Improved waveform flexibility 8 bit, 128 pt. software programmable lookup tables
- Actuation symmetry exploited for reduced electrical overhead
- Typical power draw: 0.9 to 1.3 Watts (total, 5 V and 60 V inputs)

PWM

Motor Performance

- Motor speeds measured up to stator resonance
- Bi-directional operation demonstrated
 - Speeds vary with direction due to alignment differences

Drive Signal Optimization

Torque Optimization

- Maintain rotor-stator contact through 80% of stator cycle
- Maximum speed is reduced ~20%
- Allows drive electronics optimization (e.g. charge pulse)
- Currently in testing

Electrical Optimization

- An simple next step printed circuit board driver but with retained flexibility with flash EEPROM microcontroller (approximate 1.5 in²)
- Develop one-chip custom electronic assembly
- Concepts for optimization based on symmetry and well defined operating region
 - Eliminate microcontroller generate fixed waveform with discrete electronic hardware
 - Explore complementary reactive coupling to shuttle electric energy to opposing elements
- Pulsed resonance configuration
 - Lightly damped electrical resonance is excited at natural frequency minimal energy input
 - Low overhead, fixed frequency operation
 - Recently demonstrated on similar piezo system

Piezomotor During Operation

